電気化学界面シミュレーションコンソーシアム 2021年度第2回研究会

COMSOL Multiphysicsを用いた界面電気化学反応のモデリングと 腐食解析・二次電池開発への活用

冬 立柱, 永山達彦 計測エンジニアリングシステム株式会社 東京都千代田区内神田1-9-5 SF内神田ビル https://www.kesco.co.jp/

KESCO KEISOKU ENGINEERING SYSTEM 計測エンジニアリングシステム株式会社

- 設立: 2001年2月
- 所在地:東京都千代田区内神田1-9-5
- 事業内容
 - 電子計測・制御装置・検査装置の開発・製造・販売
 - 標準バス対応CPU・IOボードの輸入・製造・販売
- COMSOL関連ビジネス
 - COMSOLの日本総代理店 (2001年8月)
 - ・ 販売, 技術サポート
 - ・ セミナー開催
 - ・ 展示会,学会への出展,論文発表
 - COMSOL Conference Tokyo (毎年12月)

本年のCOMSOL Conference Tokyoは12月3日(金)~12月10日(金)Web開催

COMSOL Multiphysics

COMSOL AB, COMSOL, Inc.

- ・ 設立:1986年(スウェーデン・ストックホルム)
- 従業員:約400名以上(2016年現在)
- 事業所:22,代理店:13
 - 米国: ボストン(本社・営業拠点)
 - ・ スウェーデン: ストックホルム(開発拠点)
 - ヨーロッパ, 南米
 - アジア: インド, 中国
- ユーザ数: 110,000+ユーザ

- 第一部 COMSOL Multiphysicsにおける電気化学系モジュールおよびそれによる固液・固固 界面の電気化学反応モデリング
 - COMSOL電気化学系モジュール
 - ・バッテリデザインモジュール、燃料電池&電解槽モジュール、電気めっきモジュール、腐
 食解析モジュールおよび電気化学モジュール
 - 固液・固固界面の電気化学反応モデリング
- 第二部 腐食解析・二次電池開発への活用例
 - ・腐食と防食の解析例:異種金属接触腐食,すきま腐食,孔食,応力腐食およびカソード防食モデルなど
 - ・ 従来のリチウムイン電池の解析例:電池の劣化,電池の内部短絡,電池の内部抵抗,電池のインピーダンス,および電池の熱分析など
 - 新型二次電池の解析例:全固体リチウムイオン電池,リチウム空気電池,リチウム硫黄電池

COMSOL Multiphysics電気化学系モジュール

固液・固固界面の電気化学反応モデリング

COMSOLソフトウェア製品

COMSOLソフトウェア製品

電気化学系モジュール

In the Electrochemistry Module and the modules below:

- Current Distribution interfaces 電流分布
- Diluted Species Transport 希釈種輸送
- Surface Reaction and Equilibrium Reaction 表面反応および平衡反応
- Electroanalysis 電気分析
- Chemistry 化学
- Heat Transfer 伝熱
- Fluid Flow (Laminar and Porous Media) 流体流れ(層流および多孔質媒体内流れ)

バッテリデザインモジュール

Batteries Design Module:

Battery Interfaces

バッテリーインターフェース

• Reacting Flow interfaces

反応流インターフェース • Transport of Concentrated Species 高濃度種輸送 Fuel Cell & Electrolyzer Module: • *Hydrogen Fuel Cells*

燃料電池& 電解槽モジュール

- *Interfaces* 水素燃料電池イン ターフェース
- Water Electrolyzers interfaces 水電解槽インター フェース
- Reacting Flow interfaces
 反応流インターフェース
 Transport of Concentrated
- Species 高濃度種輸送

電気めっきモジュール

Electrodeposition Module:

- Electrodeposition
- interfaces 電気めっきインター
- フェース • Electrode, Shell 電極(シェル)
- Electrode Surface 電極表面
- Highly Conductive Porous Electrode

高導電性多孔質電極

Corrosion Module:

腐食解析モジュール

- Corrosion interfaces 腐食解析イン
- Sacrificial Edge Anode 犠牲エッジ アノード
- Infinite Electrolyte 無限界電解液
- Current Distribution, Boundary Elements
 - 電流分布 (境界要素)
- Current Distribution, Shell
 - 電流分布 (シェル)
- *Highly Conductive Porous Electrode* 高導電性多孔質電極

<u>COMSOL</u>電気化学系モジュール

- リチウムイオン電池インター フェース
- ・ バイナリ電解質電池
- 鉛蓄電池
- 単一粒子電池
- 集中電池
- 電池等価回路
- 電流分布 (シェル)
- 多孔質電極ノード
- セパレーターノード
- •初期セル電荷分布ノード
- ・充放電周期ノード
- 電気回路インターフェース
- 電池開放回路電圧ノード
- イベントインターフェース
- SPICEネットリストをインポート

https://www.comsol.jp/products/specifications/

バッテリデザイン材料ライブラリー

多孔質電極平衡電位に対するバッ テリデザイン材料ライブラリー

- 電解質導電率と電解質塩の輸送特性 も提供
- 電池インターフェースに電解質材 料・電極材料を設定
- 電極充電状態(SOC)を指定
- バッテリデザイン材料ライブラリー
 - 多くの科学文献から導入 •
 - チュートリアルは、材料ライ • ブラリの使用例を示す.
 - バッテリデザインモジュール • のみで使用可能

			材料追加	
			⊕ グローバル材料に追加 ▼ + コンポーネントに追加 ▼	
	データソース:	ローカルテーブル		t
P Aluminum (mati)	明天在。	Eag int1	▶ <u>5</u> 最近使用した材料	
Copper (mat2) Complete Florten de LivCS MCMB (Negeting Livier Betten) (et al.)	関数名:	Eeq_int i	▶ 📷 材料ライブラリ	
Graphite Electrode, LiXCo MCMB (Negative, Li-Ion Battery) (m	₩.	f(†)	▶ 🛅 標準	
 End Electrode, Envirace4 spinel (Positive, El-Ion Battery) (mat Electrode, Envirace4 spinel (Positive, El-Ion Battery) (mat Electrode, Electrode,	0.1750	4,2763	▷ 🖹 AC/DC	
Dasic (<i>Del</i>)	0.1950	4,1898	- 🖌 📼 電池	
 Interpolation 1 (Feat int) 	0.2150	4,1507	 A I Electrodes 	
Interpolation 2 (dFeedT int1)	0.2350	4,133	 Graphite Electrode, LixC6 MCMB (Negative, Li-ion Battery) 	
Operational electrode state-of-shares (Operational/SOC)	0.2550	4,1248	 Hard Carbon (Negative, Li-ion Battery) 	
LipE6 in 3:7 EC:EMC (Liquid electrolyte Lision Batten) (mat5)	0.2750	4,1209	 HxLiN5 Electrode (Negative, NiMH Battery) 	
 Environmental de la construcción de la	0.2950	4.119	 LCO Electrode, LiCoO2 (Positive, Li-ion Battery) 	
Electrolyte conductivity (ionc)	0.3150	4.1179	LFP Electrode, LiFePO4 (Positive, Li-ion Battery)	
Species properties (SpeciesProperties)	0.3350	4.1171	 LMO Electrode, LIMn2O4 Spinel (Positive, Li-ion Battery) LTO Electrode, LiMTEO12 (Negative, Li-ion Battery) 	
Electrolyte salt concentration (<i>cElsalt</i>)	0.3550	4.1165	LIO Electrode, Li4113012 (Negative, Li-Ion Battery)	
E Lithium-Ion Battery (liion)	0.3750	4.116	NCA Electrode (Fositive, Li-ion Battery)	
Electrolyte 1	0.3950	4.1153	NCC 111 Electrode LiNio 33Mn0 33Co0 33O2 (Positive Li-ion Batte	env)
No Flux 1			NMC 811 Electrode, LiNi0.8Mn0.1Co0.1O2 (Positive, Li-ion Battery)	
Eeq_	int1(t)(V)		NiOHO-Hx Electrode (Positive discharge, NiMH Battery)	
			NiOHO-Hx Electrode (Positive charge, NiMH Battery)	
4.5			Pb Electrode (Negative, Lead-Acid Battery)	
4.5			PbO2 Electrode (Positive, Lead-Acid Battery)	
4 -			Silicon electrode, LixSi (Negative, Li-ion Battery)	
			🔺 📼 Electrolytes	
3.5		1	KOH (Liquid binary electrolyte)	
3 -		\	LiPF6 in 1:1 EC:DEC (Liquid electrolyte, Li-ion Battery)	
		N N	LiPF6 in 1:2 EC:DMC and p(VdF-HFP) (Polymer electrolyte, Li-ion B	attery)
2.5 -			LiPF6 in 2:1 EC:DMC and p(VdF-HFP) (Polymer electrolyte, Li-ion B	attery)
2 -		\	LiPF6 in 3:7 EC:EMC (Liquid electrolyte, Li-ion Battery)	
	-		LIPF6 in 0. IPC:0.2/EC:0.63EMC (Liquid electrolyte, Li-ion Battery)	
0.	2	T	Sulphuric Acia (Electrolyte, Lead-Acia Battery)	
			10	
			10	
KEISOKU ENGINEERING SYSTEM				

異種リチウムイオン電池

アプリケーションライブラリ

○ リフレッシュ 間 COMSOL アプリケーションライブラリのアップデート (●)

 ▲ □ パッテリデザインモジュール ▷ □ アプリケーション □ □ □ □ □ □ □ 		
 Ithium_sulfur nicd_battery_1d nimh_battery_1d nimh_equivalent_circuit_battery orange_battery over_discharge_protection pb_acid_battery_1d primary_cd_grid zn_ago_battery_1d 	このモデルは理想的な3次元 質電歴の構造の詳細を模	このようなモデル化されたリチウムイオン電池ユニットセルの動作を説明します、ジオメトリは多孔 助しています、このようなモデルは異種モデルと呼ばれます。
 ■ 100 (リチウムイオン) ○ capacity_fade_seed 	多孔質電極を記述するため 形状を記述します. モデルは)の典型的な均質化されたアプローチとは対照的に、異種モデルは細孔電解質と電極粒子の実際の 構造力学との連成をして、粒子でのフォンミーゼス応力を計算します。
 capacity_fade diffusion_induced_stress 	名前	heterogeneous_li_battery
heterogeneous_li_battery internal_short_circuit li_air_battery_1d li battery_1d	使用モジュール	 COMSOL Multiphysics および パッテリデザインモジュール および 次のうちいずれか 音響モジュール, MEMS モジュール, 金属プロセスモジュール または 構造力学モジュール および 次のうちいずれか 音響モジュール, MEMS モジュール, マルチボディダイナミクスモジュール または 構造力学モジュール
 li_battery_drive_cycle li_battery_impedance 	フィジックスインターフェース	リチウムイオン電池 固体力学 希釈種輸送
 li_battery_internal_resistance li_battery_multiple_materials_1d 	作成バージョン 計算時間	COMSOL Multiphysics 5.6 (Build: 258) 1 分, 15 秒
 II_battery_rate_capability Ii_battery_seed Ii_battery_single_particle 		
 li_battery_solid_electrolyte li_battery_spiral_2d li_battery_tutorial_2d 		
 lumped_li_battery_capacity_loss lumped_li_battery_parameter_estimation 		KESCO

pouch_cell_utilization

アプリケーションライブラリ内での計算例における, モデルの説明,操作手順がPDFファイル付きで提供 されている.

This model is loansed under the COMSOL Software License Agreement 5.4.

アプリケーションライブラリ

11

- 0 X

0 🔺 🥚

a 🖂 🎝

 \odot

B

B

60 æ 0 a 10

- ・腐食解析インターフェース
- ・電極表面ノード
- ・内部電極表面ノード
- ・犠牲エッジアノード
- ・無限界電解液ノード
- 電流分布 (境界要素)
- 電流分布 (シェル)
- ・ 電流分布 (パイプ)
- ・高導電性多孔質電極ノード
- ・薄電極表面ノード
- ・穿孔電極面ノード
- ・パイプ電極表面ノード
- パイプポイント犠牲アノード
- ・レベルセットインターフェース
- ・フェーズフィールドインター フェース

https://www.comsol.jp/products/specifications/

ブラリ

ら設定

•

٠

•

アプリケーションライブラリ

○ リフレッシュ 図 COMSOL アプリケーションライブラリのアップデート ⊕ アプリケーションギャラリー

検索 ■ 1000+ COMSOL Multiphysics® ト × + 🔺 🔙 腐食解析モジュール → C ର ⊡ https://www.comsol.jp/models?g=Corrosion u 6 6 🤉 🖬 🧕 酢酸/酢酸ナトリウム溶液中の鉄の隙間腐食 ▲ 前 陰極防食 ライブデモ コンタクト JAPAN 9 ログイン Q anode_film_resistance cathodic protection in concrete 製品 ビデオ・ギャラリ ブログ サポート monopile multiple_oil_platforms oil_platform アプリケーションギャラリ ship_hull 100 ▲ 前間 10 crevice_corrosion_fe crevice_corrosion_with_deformation クイック検索 105 10-6 10-5 10-4 10-3 アプリケーションギャラリには電気、構造、音響、流体、熱および化学分野に関連する(: ▲ 前 ガルバニック腐食 comsolmph}チュートリアルおよびデモアプリファイルが用意されています. これらの例 o atmospheric_corrosion_busbar_geom この例では、等量の酢酸と酢酸ナトリウムによって形成されるpH 4.8の緩衝液中の鉄の隙間腐食をモデル化しています。このモデ はチュートリアルモデルまたはデモアプリファイルとそれに付随する手順をダウンロー Corrosion は、隙間の壁での鉄の電気化学的溶解と、電解質での不均一な平衡反応を組み合わせたものです。モデルは1Dです。 atmospheric corrosion busbar ドすることにより独自のシミュレーション作業の開始点として使用できます. atmospheric_corrosion 分野でフィルタ-Ŧ 名前 クイック検索機能を使用して専門分野に関連するチュートリアルやアプリを検索します. crevice corrosion fe co2_corrosion ・COMSOL Multiphysics および MPHファイルをダウンロードするには、ログインするか、有効なCOMSOLライセンスに 使用モジュール corrosion_parameter_estimation ・腐食解析モジュール 製品名で検索 Ŧ 関連付けられている COMSOL アクセスアカウントを作成します. ここで取り上げた例の galvanic_corrosion_mg_alloy フィジックスインターフェース 3次電流分布(ネルンスト・プランク) 多くは COMSOL Multiphysics® ソフトウェアに組み込まれ ファイルメニューから利用で きるアプリケーションライブラリからもアクセスできることに注意してください. galvanic corrosion with deformation 作成バージョン COMSOL Multiphysics 5.6 (Build: 260) フィルター galvanized_nail 計算時間 3秒 isolator thickness 作成者 COMSOL localized corrosion Is 最終更新日時 2020/10/14 16:55:47 localized_corrosion_pf 2020/10/14 16:55:47 Search Term: Corrosion x 作成日時 localized_corrosion stray current stress corrosion **Under-Deposit Corrosion** アプリケーションライブラリと同じようにCOMSOL社 under_deposit_corrosion In this model, the effect of corrosion product on galvanic ▲ 1111 一般電気化学 corrosion between a magnesium alloy (AE44) and mild steel in ホームページのアプリケーションギャラリにモデル事例 contact with brine solution is presented, wherein deformed cyclic_voltammetry_1d boundaries due to both deposition of corrosion product as well diffuse double layer も提供され、キーワードによって簡単に検索できる. as dissolution of magnesium are considered. ... 詳細を見る impedance_spectroscopy microdisk_voltammetry https://www.comsol.jp/models?g=corrosion orange_battery **断 🗮 💵**

腐食解析モジュール

🚥 PDF ドキュメントを開く

酸化還元反応

▶ 各電極反応は酸化還元反応で表現できる. その中に電子が反応種の一つとして含まれる.

電極反応と活性化エネルギー

▶ 電極反応は、電極と電解質の界面で起こる電気化学反応である.電子移動が起こるのには、活性 化エネルギーを超える必要がある.

スケール

アップ

解析スケール

原子スケール

メソスケール

マクロスケール

シュレディンガー方程式

 $-\hbar^2 \nabla \cdot \left(\frac{\nabla \psi}{2m}\right) + V\psi = i\hbar \frac{\partial \psi}{\partial t}$

※第一原理計算で解析

拡散方程式 (Newmanモデル)

 $N_{\rm s} = -D_{\rm s} \nabla C_{\rm s}$

電極中のLi+イオンのインターカレーション

スケール

アップ

17

解析スケール

複数の現象が関連

解析スケール

ネルンスト・プランクの式

- ▶ ネルンスト・プランクの式は、流体媒質中の荷電粒子の運動を記述する質量保存方程式である.
 - ネルンスト-プランク輸送

$$\frac{\partial c_i}{\partial t} + \nabla \cdot \mathbf{N}_i = R_i, \qquad \mathbf{N}_i = -D_i \nabla c_i + c_i \mathbf{u} - z_i m_i F c_i \nabla \phi_i \leftarrow \mathbf{v}_i \mathbf{v}_$$

▶ 電流密度ベクトルと電流連続の式
$$\mathbf{j} = F \sum_{i} z_{i} \mathbf{N}_{i} \qquad \mathbf{j} = F \left(\sum_{i} -z_{i} D_{i} \nabla c_{i} - \nabla \phi_{l} \sum_{i} (z_{i})^{2} m_{i} F c_{i} \right)$$
電気的中立性
$$\nabla \cdot \mathbf{j} = Q_{l}$$

化学同人

電流密度分布のタイプ

- ◆ 1次:オームの法則による電圧降下 のみを仮定
- ◆ 2次:活性化過電圧の効果を追加 (バトラー・ボルマー式あるいは類 似のもの)
- 3次:質量輸送効果の追加(濃度過 電圧)

3次電流分布

▶ ネルンスト-プランク-ポアソン

- 局所電荷中性を仮定できない条件下
- インターフェース:ネルンスト・プランク・ポアソン方程式 3次電流分布(ネ ルンスト・プランク)(tcd)(電荷保存モデル:ポアソン)
- ▶ 水ベース電気中性
 - 電気中性の条件下,水素イオンと水酸化物イオンの輸送を含む水のイオン 化平衡条件を追加

▶ 支持電解液の仮定

- ・ 導電率が反応によって影響されない条件下
- インターフェース: 3次電流分布 (ネルンスト・プランク)(tcd) (電荷保存 モデル:支持電解質) = 2次電流分布(cd)+希釈種輸送(tds)
- ▶ 電気分析
 - 電解液が多く微小電流密度: オーム電圧降下を無視の条件下
 - インターフェース: 電気分析(tcd)
- ▶ 高濃度電解液理論
 - 荷電化学種は溶液における相互作用(両極性拡散係数),電池インター フェースに実装

▶ ネルンスト・プランク(電気中性)

- ・ 質量輸送=電荷輸送の条件下
- インターフェース:3次電流分布(ネルンスト・プ ランク)(tcd)(電荷保存モデル:電気中性)

▼ 電解質電荷保存

電荷保存モデル:

電気中性

電気中性

水ベース電気中性

支持電解質

電気分析 (電位勾配なし)

ポアソン

多孔質媒体内の電流保存則および化学種の質量保存則

> 電流保存則(電流連続の式)

▶ 質量保存則
$$\nabla \cdot \mathbf{j} = \epsilon_l F \sum_i z_i R_i + Q_i$$

$$\frac{\partial \epsilon_l c_i}{\partial t} + \nabla \cdot \left(-D_{i,\text{eff}} \nabla c_i - z_i m_{i,\text{eff}} F c_i \nabla \phi_l \right) + \mathbf{u} \cdot \nabla c_i = \epsilon_l R_i$$

・ 輸送と電流密度の計算

$$\mathbf{N}_{i} = -D_{i,\text{eff}} \nabla c_{i} - z_{i} m_{i,\text{eff}} F c_{i} \nabla \phi_{l} + \mathbf{u} c_{i}$$
$$\mathbf{i}_{l} = F \sum_{i} z_{i} (-D_{i,\text{eff}} \nabla c_{i} - z_{i} m_{i,\text{eff}} F c_{i} \nabla \phi_{l})$$
$$D_{i,\text{eff}} = \epsilon_{l}^{1.5} D_{i} \qquad \epsilon_{l} : 空隙率$$

酸性水溶液中における鉄の腐食

金属と酸化剤の標準電極電位:

金属系	E^0 / V _{SHE}			
K/K+	-2.94	酸化		
Ca/Ca ²⁺	-2.87	しやすい		
Na/Na⁺	-2.71	≜		
Mg/Mg ²⁺	-2.36			
AI/AI ³⁺	-1.68			
Zn/Zn ²⁺	-0.76		酸化剤系	E^0 / V _{SHE}
Fe/Fe ²⁺	-0.44		H ₂ /H⁺	0.00
Ni/Ni ²⁺	-0.24		Sn4+/Sn2+	0.15
Sn/Sn ²⁺	-0.14		Fe ³⁺ /Fe ²⁺	0.77
Pb/Pb ²⁺	-0.13		Ce4+/Ce3+	1.71
H ₂ /H ⁺	0.00		Cl ₂ (aq)/Cl-	1.40
Cu/Cu ²⁺	0.34		NO3 ⁻ /NO2 ⁻	0.84
Pt/Pt ²⁺	1.32	還元	MnO ₂ /Mn ²⁺	1.23
Au/Au⁺	1.69	しやすい	O ₂ /H ₂ O	1.23

腐食解析の電気化学モデリング

平衡電位と腐食電位 化学反応: Fe + 2H⁺ → Fe²⁺ + H₂ 2つの半反応式: アノード反応: Fe → Fe²⁺ + 2e⁻ (金属溶解) カソード反応: 2H⁺ + 2e⁻ → H₂ (ガス発生) Fe/Fe²⁺系の平衡電位: Fe²⁺ + 2e⁻ 与 Fe 溶質の濃度に関する平衡電位 ネルンストの式: $E = E^0 + \frac{RT}{zF} ln \frac{a_{Ox}}{a_{Red}}$ 1kmol·m⁻³の濃度の金属イオンを含む水溶液中 に浸漬させた金属の平衡電位は「標準電極電位,

E⁰」と呼ばれ,腐食の教科書や電気化学の教科書には必ずまとめられている.

腐食電位 (自然電位, 混成電位)

酸性水溶液中の鉄表面:

腐食電位(自然電位)はアノード反応とカ ソード反応によって導かれるので,混成電 位とも呼ばれる.

春名ら, "Ⅱ. 腐食の電気化学測定法の基礎 – 腐食電位", 材料と環境, 67, 2-8 (2018).

リチウムイオン電池の電気化学モデリング

トポ化学反応とインターカレーション反応

- ▶ トポ化学反応:トポとは元来,場所という意味であるが,一般には,結晶中の化学結合を破らない反応をトポ化学反応と称している.イソターカレーション反応もトポ化学反応の一種である.
- ▶ インターカレーション:元来,カレンダーに「閏月(うるうづき)」を入れるという意味であるが,層状の結晶の層間へその結晶の二次元構造を保持したまま,分子,原子あるいはイオンを挿入脱離する反応をインターカレーショソ反応という.

✓ リチウムイオン電池の材料は正極と負極と共に層状構造の結晶をしており、その間にリチウムが挟みこまれた構造をしている.これはインターカレーション型となる.
 ✓ リチウムイオン電池の電解液では、充放電の際はリチウムイオンが正極と負極に行ったり来たりする移動であり、トータルのリチウムイオンの量は変わらない.これをロッキングチェア型やシャトルコック型と呼ぶ.

(インターカレーション型) (ロッキングチェア型) (インターカレーション型)

電池の充放電反応は、活物質間をリチウムイオンが行き来しているだけである.

リチウムイオン電池の電気化学モデリング

Electrochemical Systems

Third Edition

1) 高濃度電解液理論

リチウムイオン電池における電解液中のリチウムイオン輸送は高濃度電解液理論に従う.これによって, リチウムイオン輸送への駆動力は電気化学ポテンシャル勾配で決められる.

リチウムイオン電池の電気化学モデリング

リチウムイオン電池の電気化学モデリング

▶ リチウム金属の電極反応

▶ バトラー・ボルマー式

 $Li^+ + e^- \Leftrightarrow Li$

▶ 電極内のリチウム濃度

$$\frac{\partial c_s}{\partial r}|_{r=0} = 0 \qquad -D_s \frac{\partial c_s}{\partial r}|_{r=r_p} = -R_{\text{Life}}$$

電極内における電流保存式

リチウムイオン電池の電気化学モデリング 平衡電位と混成電位

- ▶ リチウムイオン電池における平衡電極電位は電極反応が平衡状態にあるときの電極電位である.
- ▶ 黒鉛負極活物質表面上のSEI皮膜は,充電時において電解質の分解反応(副反応)によって生成される.

リチウムイオン電池

電解質導電率*σ_l* 電極導電率*σ_s* 平衡電位*E_{eq}*

拡散係数 D_l 活量係数f

全固体電池の電気化学モデリング

> リチウム種の輸送

固体電解質におけるリチウムイオンは格子欠陥を介してホッピングして移動する.電荷的中性条件に従い,固体電解質内に濃度勾配はゼロであるのが考慮される.

 $-D_s \frac{\partial c_s}{\partial r}|_{r=r_p} = -R_{\rm Li\theta}$

固体電解質電極活物質粒子

> リチウム挿入脱離反応✓ バトラー・ボルマー式

 $i_{\rm loc} = i_0 \left[\exp\left(\frac{\alpha_a F \eta}{RT}\right) - \exp\left(\frac{-\alpha_c F \eta}{RT}\right) \right]$

$$i_0 = i_{0,\text{ref}}(T)(\frac{c_s}{c_{s,\text{ref}}})^{\alpha_c}(\frac{c_{s,\text{max}} - c_s}{c_{s,\text{max}} - c_{s,\text{ref}}})^{\alpha_a} \quad c_{s,\text{ref}} = c_{s,\text{max}}/2$$

薄膜型全固体電池 多孔質電極は使用されないため、全ての電気 化学反応は、固体電解質と電極領域との間の 界面で起こる. $\nabla c_{\rm s}|_{cc} = 0$

固体電解質

難燃性

固体電解質

出典:

1) N. Wolff, F. Roder, U. Krewer, Model based assessment of performance of lithium-ion batteries using single-ion conducting electrolytes, Electrochim. Acta, **284**, 639 (2018).

 $-D_{\rm s} \nabla c_{\rm s}|_{interface} = -R_{\rm Li\theta}$

2) S. D. Fabre, D. Guy-Bouyssou, P. Bouillon, F. Le Cras, C. Delacourt, Charge/discharge simulation of an all-solid-state thin-film battery using a one-dimensional model, J. Electrochem. Soc., **159**, A104 (2012).

化学的

安定性

EV用バッテリ

Li+単独

熱的

安定性

正極活物質

- ✓ 界面追跡法と比較して解析精 度は劣る.
- ✓ 界面移動の表現は界面関数に よって求めるで、メッシュの ひずみの問題は発生しない.

電極表面形状変化

ガルバニック腐食

Time=0 Surface: Electrolyte potential (V) Arrow Surface: Electrolyte current density vector (Spatial) Line: 1 ▲ 1.418 0.014 0.013 0.012 0.011 1.4 0.01 0.009 0.008 1.38 0.007 0.006 0.005 1.36 0.004 0.003 0.002 1.34 0.001 -0.001 1.32 -0.002 -0.003 ALE 法 -0.004 -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 ▼1.3037

電極表面形状変化

ALE(Arbitrary Lagrangian-Eulerian)法

Laplaceスムージングの平滑化法

定常状態	$\frac{\partial^2 x}{\partial X^2} + \frac{\partial^2 x}{\partial Y^2} = 0$	$\frac{\partial^2 y}{\partial X^2} + \frac{\partial^2 y}{\partial Y^2} = 0$
非定常状態	$\frac{\partial^2}{\partial X^2}\frac{\partial x}{\partial t} + \frac{\partial^2}{\partial Y^2}\frac{\partial x}{\partial t} = 0$	$\frac{\partial^2}{\partial X^2}\frac{\partial y}{\partial t} + \frac{\partial^2}{\partial Y^2}\frac{\partial y}{\partial t} = 0$

Hyperelasticスムージングの平滑化法はメッシュ変形のエネルギーの最小値を求める.

$$W = \int_{0}^{1} \frac{\mu}{2} (I_1 - 3) + \frac{\kappa}{2} (J - 1)^2 dV$$

Yeohスムージングの平滑化法ー ひずみエネルギー

$$W = \frac{1}{2} \int_{\Omega} C_1 (l_1 - 3) + C_2 (l_1 - 3)^2 + C_3 (l_1 - 3)^3 + \kappa (J - 1)^2 dV$$

座標系

- ◆ 物質座標系: X, Y, Z / R, PHI, Z
- ◆ 空間座標系:x,y,z/r,phi,z
- ◆ ジオメトリ座標系:Xg,Yg,Zg/Rg,PHIg,Zg
- ◆ メッシュ座標系: Xm, Ym, Zm / Rm, PHIm, Zm

Winslowスムージングの平滑化法

$\partial^2 X$	$\partial^2 X$	$\partial^2 Y$	$\partial^2 Y$
∂x^2 +	$\frac{\partial y^2}{\partial y^2} \equiv 0$	∂x^2 +	$\frac{\partial y^2}{\partial y^2} =$

▲ メッシュ ▲ Mesh 1 ▲ *Most Deformed Configuration 1 (frommesh 1)* ▶ ▲ Mesh 2

- Deformed Configuration 2 (frommesh2)
 Mesh 3
- Deformed Configuration 3 (frommesh3)
 Mesh 4
- Deformed Configuration 4 (frommesh4)
 Mesh 5

変形速度

- べる Study 1 ⊨ ステップ 1: Current Distribution Initialization
- 🚾 ステップ 2: Time Dependent 🛛 🚽

▷ 📊 ソルバー構成

🛃 ジョブ構成

іі 結果

 $\frac{\partial \mathbf{x}}{\partial t} \cdot \mathbf{n} = v_{\text{tot}}$

✓ 自動リメッシング

ジオメトリにリメッシュ:

□ パラメトリックソルバーを分散化

0

スタディ拡張

│ 補助スイープ

スイープタイプ:

Geometry 1

指定の組合わせ

▶ パラメーター名 パラメーター値リスト

↑↓+≔\\⊳⊡…

モデルビルダー ← → ↑ ↓ 🐷 📰 📰 ▾ ▲ 🔇 Untitled.mph (root) ▲ () グローバル定義 Pi パラメーター 1 < デフォルトモデル入力 🌐 材料 ▲ --- コンポーネント1 (comp1) ▷ 〓 定義 ▶ 🖄 ジオメトリ1 **4** 🚺 材料 Fe in acetic acid/sodium acetate (A) ▲ 🕌 3次電流分布 (ネルンスト・プランク) (tcd) --- 流束なし1 --- 絶縁体 1 --初期値1 A — 高導電性多孔質電極1 ➡ 多孔質電極反応1 - 平衡反応1 - 平衡反応 2 - 平衡反応 3 --- 濃度 1 --- 電解質電位 1 1 בלילא 🔬 🔺 😪 スタディ1 🗁 ステップ 1: 定常 い ソルバー構成 🛃 ジョブ構成 ▷ 📠 結果 水ベース電気中性 tcd.cH, tcd.cOH

- * #	設定 特性			3次電
	高導電性多	孔質電極		
	拡散係数:			
	D _{cCH3COO}	ユーザー定義		•
		DCH3COO		m²/s
	拡散係数:			
	D _{cCH3COOFe}	ユーザー定義		•
		DCH3COOFe		m²/s
nodic)	D _{cH}	ユーザー定義		•
		9.3e-9[m^2/s]		m²/s
	D _{cOH}	ユーザー定義		•
		5.3e-9[m^2/s]		m²/s
	▼ 電気泳動			
	易動度:			
	ネルンスト・ア	インシュタイン関係式	;	•
	$u_{m,i} = \frac{D_i}{BT}$			
	電荷数:			
	Z _{cFe}	2		1
	Z _{cFeOH}	1		1
	Z _{cNa}	1		1
	Z _{cCH3COOH}	0		1
	Z _{cCH3COO}	-1		1
	Z _{cCH3COOFe}	1		1
	▼ 水自己イス	オン化		- C
	p <i>K</i> w 標準	I		-
	$pK_w = 14.94$	4 - 0.04209(<i>T</i> - 2	273.15) + 0.0001718(T - 273	3.15) ²
	$K_{\rm w} = 10^{-pK_{\rm w}}$	^v [M ²]		

COMSOL腐食解析モジュール

3次電流分布および平衡反応

KEISOKU ENGINEERING SYSTEM

電極反応 $Fe(s) \Rightarrow Fe^{2+}(aq) + 2e^{-}$ 多孔質電極反応 平衡反応 電位: 電極電位 (tcd/hcpce1) V 昌度: • 共通モデル入力 選択: 化学量論係数 1 関与電子数: 2 n 化学量論係数: -1 VcFe 0 VcFeOH 0 VcNa 方程式 0 VCCH3COOH V_{cCH3COO} 0 V_{cCH3COOFe} 0 平衡定数 $\left(n + \sum_{i=1}^{N-1} z_i v_i\right)$ $\nu_N =$ 平衡定数: Z_N K_{eq} K1 $\sum_{ox} |\nu_{ox}| Ox + ne^- \Rightarrow \sum_{red} \nu_{red} Red$ $\nu_{\rm ox} < 0$ $\nu_{red} > 0$

平衡反応 $H_{2}O + Fe^{2+}(aq) \Leftrightarrow FeOH^{+}(aq) + H^{+}(aq)$ $K_1 = 1.63 \cdot 10^{-7}$ ラベル: 平衡反応1 ドメイン選択 全ドメイン ▼ 化学量論係数 v_{cFe} -1 1 v_{cFeOH} 優先関係および寄与 ν_{cNa} 0 $\nu_{cCH3COOH}$ 0 平衡条件 $\nu_{cCH3COO}$ 0 0 $v_{cCH3COOFe}$ ν_{cH} 1 0 ν_{cOH}

COMSOLバッテリデザインモジュール

緩和

【劣化品】

容量・出力低下を招く

充放電過程の制御

- ▶ 充放電周期:終止条件-時間,セル電圧,セル電流,電極中のリチウム 種の濃度
- ➢ SEI皮膜の形成

充放電	周期	
▼ 放電	記設定	
放電電泳	ñ:	
I_{dch}	-i_1C	A
最小電E	E:	
V _{min}	E_min	۷
🗌 定電	圧放電を含む	
🗌 休息	期間を含む	
▼ 電荷	行設定	
荷電電波	ft:	
I_{ch}	i_1C	A
最大電話	E:	
V _{max}	E_max	۷
✓ 定電	圧充電を含む	
上カットフ	わてて、100000000000000000000000000000000000	
l _{upper}	I_min_ch	A
🗌 休息	期間を含む	
▼ 開始	ŧ τ −ド	
次で開始	à:	
先に充		•
境界電信	立(初期値):	

36
固液・固固界面の電気化学反応モデリング

t

t relax start

COMSOLバッテリデザインモジュール イベントとグローバルODEインターフェース インジケータ状態 ラベル: Indicator States 1 充放電過程の転換パラメータ インジケータ変数 【イベント (ev) 🚺 インディケーター状態 1 $nojac(g(v,v_t,v_{tt},t)) - u = 0, u(t_0) = u_0$ CC DCH CC CH RELAX ▶ 暗示的イベント1 "名前 ▶ 暗示的イベント2 0 充電 1 0 q(v,vt,vtt,t) 0 1 緩和 0 CC_CH*(E_cell-E_max)/E_max cc_ch_to_relax 0 0 1 RELAX*(t-t_relax_start-t_relax) 放電 relax_to_cc_dch CC_DCH*(E_min-E_cell)/E_min cc_dch_to_cc_ch 暗示的イベント グローバルODEインターフェース ラベル: Implicit Event 1 グローバル方程式 イベント条件 ラベル: Global Equations 1 条件: cc ch to relax>0 グローバル方程式 リチウムイオン電池 □ コンシステントな初期化を使用 $f(u_{\mu_t}, \mu_{t_t}, t) = 0, \ u(t_0) = u_0, \ u_t(t_0) = u_{t_0}$ の充放電過程を自由 再初期化 に制御 名前 f(u,ut,utt,t) (1) 初期値 (u_0) " 変数 CC_CH*(I_ch-i app)/i 1C+RELAX*i app/i 1C+CC_DCH*(I_dch-i_app)/i 1C 式 i_app 0 CC_CH 0 RELAX 1

固液・固固界面の電気化学反応モデリング

COMSOLバッテリデザインモジュール

化学(chem)インターフェース

> 以入 ジオメトリ: Geometry 1	次を仮定し	(万程式表示:						
■ 材料	スタディ:	スタディ: Study 1. 電流分布初期化: Current D 🔻 🧉 熱力学: Thermodynamics		▶ 名前	CAS	12	(学公式	データベース
▲ 1書 2次電流分布: Secondary Current Distribution (cd)	7.771		▶ <u> </u>	water	7732-1	18-5 H2	20	COMSOL
□ 索紹告: Electrolyte 1	$\eta = E_{ct}$	$-E_{eq}, E_{ct} = \phi_s - \phi_l$	▶ 査 熟力学来: Gas System - O2 (pp2)	hydrogen	1333-7	74-0 H2	2	COMSOL
■ 電解質, Electroyte 1 ■ 絶縁体: Insulation 1 ■ 知期値: Initial Values 1	$i_v = a_v i_{loc}$	oc	JUN-A JP: Component 1 (comp I)					
▲ ● 多孔質電極: Porous Electrode - H2 and H2O (Cathode)	▼ モデル	入力 🔣	 	-	混合相特性	ŧ		
阳 多孔質電極反応: Porous Electrode Reaction 1	油曲		↓ 化学程: Species: H2	91	イプ:			
》 🔚 多孔質電極: Porous Electrode - O2 (Anode)	温度:		▲ 電極反応: 1: H2O+2e<=>H2+O(ads)		高濃度種			•
🥃 接地: Electric Ground 1	T 共	通モデル入力 🔻 🛅 📫	上 化学種: Surface species: O(ads)		1 熱力学			
🤚 電極電流: Electrode Current 1			4 👬 化学: Chemistry - O2 <i>(chem2)</i>	劫	力学系			
4 🛃 化学: Chemistry - H2 and H2O <i>(chem)</i>	▼ 平衡	電位	上 化学種: Species: O2	200	熱力学系: Gar System - H2 and H2O (np1)			
↓ 化学種: Species: H2O	亚海南点。		温、電應反応: I: O2+4e<=>2O(ads) 上 化常種: Surface species: O(ads)	-	☆/J子术: 0a:	is system - nz	and H2O (pp I)	•
上 化学種: Species: H2	干倒竜位;		▶ IS ブリンクマン方程式: Brinkman Equations (br)	相				
<u>抓</u> 電極反応: 1: H2O+2e<=>H2+O(ads)	E _{eq} :	1−ザ−定義 🗸 🗸 🗸	▶ 🍓 高濃度種輸送: Transport of Concentrated Species	(tcs)	気相			•
📜 化学種: Surface species: O(ads)	ch	em.Feg.er1	/ 🔺 🚠 マルチフィジックス	密	度:			
4 💀 化学: Chemistry - O2 <i>(chem2)</i>			Not the section of		熱力学			•
↓ 化学種: Species: O2	▼ 電極/	反応速度	ト ▲ メッシュ: Mesh 1					
<u>抓</u> 電極反応: 1: O2+4e<=>2O(ads)			○ スタテイ: Study 1 ドA フラップス 示法八大知知化: Connect Distribution Life	• I'aut	化字種適合	Ì		
📜 化学種: Surface species: O(ads)	ローカル電流密度式:		🗠 ステップ 1: 電流分布初期化: Current Distribution Init	lalizat	- バルク種			
▶ 100 ブリンクマン方程式: Brinkman Equations (br)	i _{loc,expr}	ユーザー定義 🔹	ステップ 3: 定常: Stationary 2	••	ルヴォ ル	学研究品公支	気景比索 (1)	執力学 비
▷ <mark>:</mark> 鑷 高濃度種輸送: Transport of Concentrated Species <i>(tcs)</i>		chemiloc er1 A/m	2 ステップ 4: 定常: Stationary 3		10-7-1± 10	·于1王只里刀平	東重元年(1)	***/
▷ 🦓 マルチフィジックス		A/II	▶ 「┌┌ ソルバー構成	н	2 Var	nable	WHZ	HZ
> 人 メッシュ: Mesh 1	🔄 限界電流密度		→ ジョフ構成	н	20 Var	riable	wH2O	H2O
🕫 スタデイ: Study 1	$i_{loc} = i_{loc}$	c.expr	ۥ					

https://www.comsol.jp/model/solid-oxide-electrolyzer-74001

固液・固固界面の電気化学反応モデリング

- 定常分析(定常状態)
 - 電流分布
 - 分極曲線
- 動的シミュレーション
 - 過渡分析
 - サイクリックボルタンメトリ
 - 故障電流分析
- 電流密度分布初期化
 - 高度な非線形問題に対して、適した初期電位値を取得する.
- ・ 電気化学インピーダンス分光法 (EIS)
 - 周波数域での現象の完全モデル
 - 高忠実度の物理モデルに基づくオーム性,活性化,化学種の輸送及び吸着(電気二重 層充放電)の影響

🗠 スタディ: Discharge and charge

パラメトリックスイープ: Parametric Sweep

M. ステップ 3: 時間依存: Time Dependent

- 等価回路に物理的意味を与える
- ・ 定常状態の非線形モデルを利用する上で、電位/電流の小さな線形摂動を追加
- 1つの物理モデルは広いベース分極範囲に適用

ソルバー

🛝 ステップ 1: 電流分布初期化: Current Distribution Initialization: Primary

💫 ステップ 2: 電流分布初期化: Current Distribution Initialization: Secondary

インピーダンス分光法の研究,ナイキ スト線図.実験データに適合したモデ ル.

0.4

0.35

0.3

0.25

0.2

▼ 0.1936

腐食解析の応用例

0.01 0.02 0.03 0.04 0.05 0.06

0.01

0.005

-0.005

-0.01

-0.015

0

電極変形を伴うガルバニック腐食

Time=2.592e5 Surface: Electrolyte potential (V) Arrow Surface: Electrolyte current density vector (Spatial) Streamline: Electrolyte current density vector (Spatial) Line: 1 0.014 ▲ 1.4131 0.012 0.01 0.008 1.38 0.006 1.36 0.004 0.002 1.34 0 -0.002 1.32 -0.004 13 -0.01 -0.005 0 0.005 0.01 ▼ 1.2973 船体の防食

Surface: Local current density (A/m²)

電極変形を伴うすきま腐食

犠牲陽極による防食

腐食解析の応用例

パイプライン腐食

浸食

粒子トレーシングモジュール

犠牲陽極を用いたモノパイルの防食

Time=12 a Surface: Electrode potential vs. adjacent reference (V)

-0,6

-0.7

-0.75

-0.8

-0.85

-0.9

-0.95

-1

-0.65

大気腐食

すきま腐食

Solution Composition at 0.844 V(SHE)

y Z x

腐食解析の応用例

腐食生成物堆積

Contour: Volume fraction of fluid 1 (1)

Time=2.3792E5 s Surface: Volume fraction of fluid 1 (1)

石油プラットフォームの防食

局部腐食

Surface: Electrolyte potential (V) Streamline: Electrolyte current density vector

Time=300 h

-4

×10⁻⁵ m

レベルセット法によるガルバニック腐食

溶液特性変化を考慮したすき間腐食

パイプラインネットワークの腐食保護 R_rcp(3)=2 Ω ライン: Electrode potential vs. adjacent reference (V)

1.47

KEISOKU ENGINEERING SYSTEM

亜鉛めっきされた釘

このモデルは、定常2次電流分布問題をモデル化するガルバニック腐食の最初のセットアップ法と3次電流分布をモデル化す るために質量輸送を追加することによるモデル拡張法を示している.

A 8.6

8.55

8.5

8.45

8.4

8.35

▼ 8.3168

電極反応電流密度

鉄の酸化反応の2次および3電流密度

m

大気腐食

このモデルは, 亜鉛ナットとボルトと接触する銅フランジとアルミニウム合金フランジを含むバスバーの大気ガルバニック 腐食をシミュレートする.

腐食生成物堆積

このモデルは、塩水に接触したマグネシウム合金 (AE44) と軟鋼の間の電解腐食に対する腐食生成物の影響をモデル化する方法を 示す.腐食生成物の堆積とマグネシウム表面の溶解の両方による変形境界は、レベルセットと変形ジオメトリの定式化を使用して、 それぞれモデル化される.

電解質電位

腐食生成物

https://www.comsol.jp/model/under-deposit-corrosion-67821

電極変形を伴うすき間腐食

このモデルは、間隙腐食も基本原理と時間依存スタディでどのように電極変形をシミュレートするのに使用できるかを例示している.

すきま腐食

このモデルは,狭小領域で溶液組成,pHが変化するすきま腐食をモデル化している.モデルは,局部腐食に伴う大きな電流を生じ,局部腐食の内部電気化学反応は外部のそれと大きく異なる。

塩化ナトリウム (NaCl) 水溶液

```
化学種: Fe<sup>2+</sup>, H<sup>+</sup>, OH<sup>-</sup>, FeOH<sup>+</sup>, Na<sup>+</sup>, Cl<sup>-</sup>
```

溶液中の平衡反応:

 $Fe^{2+} + H_2 \ 0 \Leftrightarrow FeOH^+ + H^+$ $K = 10^{-9.8}$ $FeOH^+ + H_2 \ 0 \Leftrightarrow Fe(OH)_2 + H^+$ $K = 10^{-4.9}$ $OH^- + H^+ \Leftrightarrow H_2 \ 0$ $K = 10^{-13.98}$

金属表面の化学反応:

 $Fe \rightarrow Fe^{2+} + 2e^{-}$ $H_2O + e^{-} \rightarrow H + OH^{-}$ $2H^+ + 2e^{-} \rightarrow H_2$

出典:橋口 真宜, 佟 立柱,米 大海,「COMSOL Multipysics に よる計算科学工学 - 電気化学系(3)」,計算工学, Vol.22 No.4, p.30 (2017)

石油プラットフォームの防食

このモデルは,アレイに配置された複数の石油プラットフォームの影響をモデリングする. 電流分布 (境界要素) インターフェース を使用すると,すべての電極をワイヤーフレームジオメトリのエッジに沿ったチューブとしてモデリングすることにより,問題のサ イズと計算時間を大幅に削減する.

https://www.comsol.jp/model/corrosion-protection-of-multiple-oil-platforms-19887

パイプラインネットワークの腐食保護

このモデルは, 電流分布 (パイプ) インターフェースを使った抵抗制御陰極防食に基づく防食技術を示す. 結合抵抗が提供される防 食レベルに与える影響を調査する.

https://www.comsol.jp/model/internal-pipeline-corrosion-protection-using-resistor-controlled-cathodic-protec-76381

リチウムイオン電池の解析例

電池の劣化

リチウムイオン電池のエネルギーと

10²

リチウムイオン電池の解析例

不均質系バッテリーモデル

水冷式リチウムイオン電池パック

サーフェス: Temperature (K)

50

mm

0

mm

100

50 mm

0

100

312

311

2次元リチウムイオン電池

このモデルは、リチウムイオン電池の2Dチュートリアルモデルである.セルジオメトリは実際のアプリケーションに基づいていなく、2Dモデルの設定を示すことのみを目的としている.

リチウムイオン電池インピーダンス

リチウムイオン電池のモデリング

- 負極:LTO (Li₄Ti₅O₁₂)
- セパレータ:セルガード 2325
- 正極: NCA (LiNi_{0.8}Co_{0.15}Al_{0.05}O₂)
- 電解質: 1.2 M LiPF₆ in EC:EMC
- ・ 周波数領域摂動ソルバー 時間依存=>周波数依存 $n = n_0 + \operatorname{Re}\{\tilde{n} \cdot e^{2\pi f \cdot jt}\}$

•
$$\forall \forall \forall \forall \forall \forall \forall \forall f \in \tilde{Q}$$

https://www.comsol.com/model/modeling-impedance-inthe-lithium-ion-battery-17809

最適化モデリング

✓ ソルバー: SNOPT

✓ 制御パラメータ

- NCA交換電流密度
- NCA膜抵抗
- NCA電気二重層コンデンサ
- NCA導電粒子の電気二重層コンデンサ

▼ 制御変数およびパラメーター

"パラメーター名	初期値	スケール	下限	上限
i0_pos (Exchange current density positiv •	1[A/m^2]	1	1	6
Rfilm_pos (Film resistance positive elect 🔹	2.848e-3[m^2/S]	1e-4	1e-6	5e-3
cdl_pos (Double layer capacitance positi 🔻	0.2393[F/m^2]	1	0.1	0.9
cdlvol_cs_pos (Volumetric capacitance o 🔹	2.577e5[F/m^3]	1e5	1e5	1e6

Optimized Parameters Table

🖼 | 885 🛲 85 859 0.85 | 🥅 🎲 | 📐 📋 🗮 🖬 🖙 🏼 🗸

linpoint(i0_pos) (A/m^2)	linpoint(cdl_pos) (F/m^2)	linpoint(Rfilm_pos) (Ω*m^2)	linpoint(cdlvol_cs_pos)
1.0000	0.50000	0.0010000	5.0000E5
3.6716	0.10000	7.4157E-4	5.0500E5
2.8365	0.50742	9.0705E-4	5.0224E5
2.8391	0.53582	8.8843E-4	5.0321E5
2.8328	0.53703	8.5848E-4	5.0508E5
2.7443	0.50969	5.1654E-4	5.2656E5
2.5890	0.38297	1.0000E-6	5.5899E5
2.5967	0.40712	1.0000E-6	5.5869E5
2.5967	0.40712	1.0000E-6	5.5869E5

不均質系バッテリーモデル

このモデルは,理想的な3次元形状を使用してモデル化されたリチウムイオン電池ユニットセルの動作を説明する.ジオメトリは多 孔質電極の構造の詳細を模倣している.このようなモデルは異種モデルと呼ばれる.

- ▶ リチウムイオン電池材料:
 - LCO, 正極
 - Graphite, 負極
 - Polymer electrolyte (LiPF6 in EC:DEC and p(VdF-HFP)), 高分 子電解質
- リチウムイオン電池と構造力学の 連成計算

ミーゼス応力

time_param(2)=90 Surface: von Mises stress (N/m²)

リチウムイオン電池の劣化

このモデルは、リチウムイオン電池のグラファイト電極でのSEI (固体電解質界面) 形成による電池の劣化をシミュレートする方法 を示す. イベントインターフェースを使用して定電圧と定電流の動作, および充電と放電を切り替える.

https://www.comsol.com/model/1d-lithium-ion-battery-model-for-the-capacity-fade-tutorial-12667

3000

500

1000

Cycle number (1)

1500

パウチ電池セル

このモデルは、大規模なリチウムイオン電池パウチセルの電流分布と放電曲線、および伝熱と構造力学との連成計算方法を示す.モ デルは3Dである.

電流密度

リチウム新型二次電池の解析例

全固体電池(薄膜型)1D

このモデルは、単一Li+伝導性電解質理論に基づいて、薄膜型全固体電池のベンチマーク計算モデルである.モデルは1Dである.

出典: S. D. Fabre, D. Guy-Bouyssou, P. Bouillon, F. Le Cras, C. Delacourt, Charge/discharge simulation of an all-solid-state thin-film battery using a one-dimensional model, J. Electrochem. Soc., **159**, A104 (2012).

佟 立柱, 2021年応用物理学会春季講演会, オンライン開催, 令和3年3月

全固体電池(薄膜型)2D

このモデルは,薄膜マイクロ電池の2Dモデルにおける電流密度分布およびLi濃度分布をを示す.希釈種インターフェースを使用して正極におけるLi濃度の拡散を計算する.

この例題は、2つの異なる放電レートでリ チウム硫黄電池セルの放電がモデル化さ れている。セパレーターおよび正極におけ るリチウム塩と6個のポリスルフィドの電解 質電荷および質量輸送が含まれ、固体 オクタースルフ(S8)および硫化リチウム (Li2S)の沈殿溶解も計算している。

放電曲線 ▲ 🏭 3次電流分布 (ネルンスト・プランク): Tertiary Current Distribution, Nernst-Planck 2.35 0.2 C ---- 電解質: Electrolyte 1 2.3 1 C 2.25 --- 流束なし: No Flux 1 Electric potential (V) 2.2 --- 絶縁体: Insulation 1 2.15 - 初期値: Initial Values 1 2.1 ▲ 一 セパレーター: Separator 1 2.05 ■ 非ファラデー反応: Non-Faradaic Reactions - Li2S(s) 2 1.95 一 溶解-沈着化学種の初期値: Initial Values for Dissolving-Depositing Species 1 1.9 1.85 4 — 多孔質電極: Porous Electrode 1 1.8 多孔質電極反応: Porous Electrode Reaction 1 1.75 多孔質電極反応: Porous Electrode Reaction 2 1.7 多孔質電極反応: Porous Electrode Reaction 3 3 0 1 2 多孔質電極反応: Porous Electrode Reaction 4 Capacity (Ah) — 多孔質電極反応: Porous Electrode Reaction 5 $\frac{1}{2}S_8 + e^- \leftrightarrow \frac{1}{2}S_8^{2-} \qquad \frac{3}{2}S_8^{2-} + e^- \leftrightarrow 2S_6^{2-}$ 非ファラデー反応: Non-Faradaic Reactions - Li2S(s) 非ファラデー反応: Non-Faradaic Reactions - S8(s) 溶解-沈着化学種の初期值: Initial Values for Dissolving-Depositing Species 1 $S_6^{2-} + e^- \leftrightarrow \frac{3}{2}S_4^{2-} \qquad \frac{1}{2}S_4^{2-} + e^- \leftrightarrow S_2^{2-}$ 電極表面: Electrode Surface 1 ■ 電極反応: Electrode Reaction 1 $Li \leftrightarrow Li^+ + e^ \frac{1}{2}S_2^{2-} + e^- \leftrightarrow S^{2-} \qquad S_8(s) \leftrightarrow S_8$ --- 電極電流密度: Electrode Current Density 1 $2Li^+ + S^{2-} \leftrightarrow Li_2S(s)$

https://www.comsol.jp/model/lithium-sulfur-battery-80721

リチウム硫黄電池モデル

リチウム空気電池のベンチマーク解析

このモデルは、Li金属負極、固体ポリマーセパレータ、多孔質炭素正極(空気電極)および有機電解液とするリチウム空気電池の 1Dベンチマークモデルである.

https://www.comsol.jp/model/1d-isothermal-lithium-air-battery-20023

電気化学インピーダンス分光解析

ワイヤ電極

Arrow Volume: Velocity field Arrow Volume: Velocity field Multislice: Concentration (mol/m³) Surface: Concentration (mol/m³)

電気化学の計算例

サイクリックボルタンメトリ

クロルアルカリ電解セル

マイクロディスク電極のボルタンメトリ

電気化学インピーダンス分光解析

- ▶ 電気化学インピーダンス法は、電極の伝達関数としてインピーダンスまたはアドミッタンスを求め電極界面および電解質の電気的特性を評価する方法である.
- ▶ 時間に依存する変数は周波数領域に変換される.

化学反応	$B + e^- \leftrightarrow A$
周波数領域,	摂動
	$\phi_{\rm s,ext} = E_{\rm eq} + \Delta \phi e^{j\omega t}$
インピーダンス	ス
	$\tilde{Z} = \tilde{\phi_s} / (\mathbf{n} \cdot \tilde{\mathbf{I}}_s)$

▼ 電橋	亟速度論			
速度論式タイプ:				
電気分析バトラー-ボルマー				
不均一反	瓦応速度定数:			
<i>k</i> ₀ k0) m			
カソード	☆移動係数:			
α _c 0.	5 1			
i _{loc} = n	$Fk_0\left(c_{red}exp\left(\frac{(n-\alpha_c)F\eta}{RT}\right)-c_{ox}exp\left(\frac{-\alpha_cF\eta}{RT}\right)\right)$			
▼ 化等	学量論係数			
関与電子	~数:			
n _m	1			
化学量論係数:				
$\nu_{\rm cRed}$	1			
ν_{c0x}	-1			

https://www.comsol.com/model/electrochemical-impedance-spectroscopy-14431

プロトタイプの構築

フィジックスインター フェースをレビュー 2次電流分布 (cd) 従属変数 電解質電位; phil 電位: phis 66

スタディ選択

時間依存 (初期化)

時間依存初期化(固定ジオメトリ)スタディは変形メッシュフィジックスインターフェースを 含む過渡電気化学問題に対し使用されます、スタディは電位場のみを求める電流分 布初期化スタディステップと次に引き続く時間依存固定ジオメトリスタディステップから 構成され、最初のステップで求まる場が次の計算の初期値として使用されます。

形状の作成

矩形1

galvanic_corrosion_with_deformation_parameters.txt

, 👘 🗸

7

2次電流分布の設定 参照電極 \square 電流分布タイプ ▲ 】 2次電流分布: 2次電流分布 (cd) 1 電解質: 電解質 1 電流分布タイプ: 🕨 😬 絶縁体: 絶縁体 1 2次 Image: Note: N 號♬ 方程式ビュー: 方程式ビュー ▼ フィジックス 対 材料参照電極電位 ▲ ···· 変形ジオメトリ: 変形ジオメトリ (da) **▼ 1** ▷ 🕘 自由変形: 自由変形 0 V 器↑ 方程式ビュー: 方程式ビュー 電解質 0 V 🔺 🚢 マルチフィジックス 0.197 V (Sat. Ag/AgCl vs. SHE) 0.241 V (SCE vs. SHE) -▷ 🚍 変形する電極表面: 変形する電極! 0.314 V (CSE vs. SHE) ユーザー定義 電極表面 電解質導電率 ラベル: 電極表面1 ▲ 】 2次電流分布: 2次電流分布 (cd) 温度: P 2 電解質: 電解質 1 - 🗄 📫 T 共通モデル入力 ▼ 境界選択 🕨 📒 初期値: 初期値 1 ▼ 座標系選択 選択: マニュアル # 方程式ビュー: 方程式ビュー ▲ 🔢 変形ジオメトリ: 変形ジオメトリ (dq) 座標系: 2 • Et グローバル座標系 4 # 方程式ビュー: 方程式ビュー 🔺 🧥 マルチフィジックス ▼ 電解質 電解質導電率: 🛦 Хууэз: Хууэд 1 のユーザー定義 • ▲ ¹ スタディ: スタディ1 sigma S/m 🔼 ステップ 1: 電流分布初期化: 電流分布 △ ステップ 2: 時間依存: 時間依存 等方性 • ┣ _ ソルバー構成

金属表面(カソード)

実演

2次電流分布の設定 金属表面(アノード) → ↑ ↓ ☜ ≣↑ ≣↓ ≣ ▼ 電極表面 ◆ ルート: Untitled.mph *(root)* Ē ラベル: 電極表面 2 ▷ 🌐 グローバル定義 ▲ 🧠 コンポーネント: コンポーネント 1 (comp1) ▼ 境界選択 ▷ 〓 定義 ▷ ¼ ジオメトリ: ジオメトリ 1 選択: マニュアル ▷ 🚺 材料 + 5 Ge. ▲ 🕌 2次電流分布: 2次電流分布 (cd) 2 電解質: 電解質 1 _ 💾 絶縁体: 絶縁体 1 ĥ 🕅 初期值:初期值1 ÷ 😬 電極反応: 電極反応 1 🕨 😑 電極表面: 電極表面 2 ▲ ■ 変形ジオメトリ: 変形ジオメトリ (dg) 優先関係および寄与 📒 自由変形: 自由変形 ▷ 方程式 🔺 🧥 マルチフィジックス ─ 非変形境界: 非変形境界 1 (ndb1) ▷ モデル入力 一 変形する電極表面: 変形する電極表 ▼ 溶解-沈着化学種 ▲ メッシュ: メッシュ 1 ▲ ¹ スタディ: スタディ1 ▶ 化学種 🎮 ステップ 1: 電流分布初期化: 電流分布初 密度 (kg/m^3) モル質量 (kg/mol) № ステップ 2: 時間依存: 時間依存 rho_Mg M_Mg Mg ▶ ソルバー構成 💂 ジョブ構成 ▷ 📠 結果:結果 + = • • ✓ 表面濃度変数を求解

実演

m

0.005

0

-0.001 -0.002 -0.01

-0.005

1.45

1.4

1.35

1.3

1.25

ご清聴ありがとうございました。

KESCOは20周年を迎えました

本製品の問い合わせ先
計測エンジニアリングシステム株式会社
東京都千代田区内神田1-9-5 SF内神田ビル
電話: 03-5282-7040
https://www.kesco.co.jp/

